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Third-order implementation and convergence of the strong-property-fluctuation theory
in electromagnetic homogenization
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The strong-property-fluctuation theory~SPFT! has been widely applied under the second-order approxima-
tion ~also known as the bilocal approximation! to estimate the constitutive properties of effectively homoge-
neous composite mediums. A third-order mass operator approximation is developed here. The convergence of
the long-wavelength, bilocally-approximated SPFT is demonstrated for isotropic chiral composite mediums, as
well as for chiroferrite composite mediums.
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I. INTRODUCTION

In modeling the behavior of physical systems, the ma
ematical representation of solutions as infinite series is c
monplace. However, first- or second-order approximati
are often utilized, while the implementation of higher-ord
approximations may be too arduous in practice. Clearly,
issue of convergence is of fundamental importance in s
cases. A prime example occurs in the strong-prope
fluctuation theory~SPFT!. The SPFT provides a formalism
for estimating the constitutive properties of effectively h
mogeneous, linear composite mediums. It represents an
vance over the more conventional approaches to homog
zation, such as the Maxwell Garnett formalism~including its
incremental and differential variants! and the Bruggeman
formalism @1–6#, by providing a more comprehensive d
scription of the distributional statistics of the component m
terial phases. The SPFT has been successively develope
the cases of isotropic dielectric@7#, anisotropic dielectric@8#,
isotropic chiral @9#, and, most recently, bianisotropic@10#
mediums. Recent studies for the general bianisotropic c
have highlighted the role of the component phase topol
and correlation length@11#, as well as covariance functio
@12#.

In the SPFT, statistical cumulants of the spatial distrib
tion of the component material phases are used pertu
tively to refine an initial ansatz for the nature of the homo
enized composite medium~HCM!. Solutions are expresse
in terms of a so-calledmass operatorthat—due to the pro-
cess of iteration—has an infinite series representation. Pr
ous studies@7–12# have exclusively concentrated on th
zeroth-, first-, and second-order truncations of the mass
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erator series. In the usual SPFT implementation, the sec
order truncation—known as thebilocal approximation—is
adopted. A covariance function and its associated correla
lengthL are used to characterize the distributional statis
of the component material phases under the bilocal appr
mation. Furthermore, thelong-wavelengthapproximation is
usually adopted in which the actions of scattering cent
separated by distances much greater than the correla
length are assumed to be statistically independent. To
knowledge, higher-order approximations and the issue
convergence of the mass operator representation have
hitherto been addressed. In the present paper, we deve
third-order approximation, and investigate convergence
the mass operator series. The analysis is presented for is
pic chiral composite mediums. Additionally, we conjectu
that our conclusions hold for more general mediums; t
conjecture is substantiated by our numerical results.

In the notation adopted, six-vectors~three-vectors! are in
bold ~normal! face and underlined, whereas 636 (333)
dyadics are in bold~normal! face and double underlined. Th
inverse and thel j th entry of a dyadicY= are given asY= 21

and @Y= # l j , respectively. For dyadics and vectors, the d
product denotes contraction of indexes. The unit vector c
responding to a vectornI is signified bynÎ and the 636 (3
33) identity dyadic byI= (I=). The permittivity and perme-
ability of free space~i.e., vacuum! are denoted bye0 andm0,
respectively. The Cartesian unit vector in thez direction is
uÎ z . The ensemble average of a quantityc is represented by
^c&.

II. SPFT GENERALITIES

We consider the long-wavelength SPFT pertaining to
two-phase HCM. The component phases are designatea
and b. All space is partitioned into the disjoint regionsVa
and Vb that contain the phasesa and b, respectively. Thek
©2001 The American Physical Society16-1
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component phases are assumed to be randomly distribut
spheres; the distributions are specified in terms of charac
istic functions given as

u l ~rI !5H 1, rIPVl

~ l 5a,b!.

0, rI¹Vl

~1!

In particular, statistical moments of the characteristic fu
tions are utilized: Thenth moment is the expectation valu
^u l (rI1)•••u l (rIn)& and represents the probability fo
rI1 , . . . ,rIn being inside Vl (l 5a,b); ^ & denotes en-
semble averaging. Thus, the volume fraction of phasel is
given by the first moment ofu l (rI ); i.e.,

f l 5^u l ~rI !&, ~ l 5a,b!. ~2!

Further, the second moment ofu l (rI ) is used to define a
covariance function as

t~RI !5^ua~rI !ua~rI8!&2^ua~rI !&^ua~rI8!&, ~3!

or, equivalently,

t~RI !5^ub~rI !ub~rI8!&2^ub~rI !&^ub~rI8!&, ~4!

whereRI 5rI2rI8. We define a correlation lengthL such that
the covariance functiont(RI ) vanishes foruRI u@L. In the
long-wavelength regime, the principal electromagne
wavelengths are assumed to be much larger than the c
lation lengthL.

The component phases are characterized by linear
anisotropic constitutive relations, given in the frequency d
main as

CO ~rI !5K= l •FO ~rI !, rIPVl , ~ l 5a,b!, ~5!

where

CO ~rI !5FDI ~rI !

BI ~rI !
G , K= l 5F e= l j

= l

z
= l m= l

G , FO ~rI !5F EI ~rI !

HI ~rI !
G .

~6!

The 333 dyadicse= l and m= l are the permittivity and the
permeability dyadics, respectively, whereasj

= l and z
= l are

the magnetoelectric constitutive dyadics.
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A key concept in the SPFT is thebianisotropic compari-
son medium~BCM!, characterized by the constitutive dyad
K= BCM . We denote the dyadic Green function of the BCM
G= BCM(RI ) and note that the singular behavior ofG= BCM(RI ) in
the limit uRI u→0 is conveniently isolated through

G= BCM~RI !5PG= BCM~RI !1D= d~RI !, ~7!

whereP is the principal value operation excluding a sphe
cal region aboutRI 50I , D= is the corresponding depolariza
tion dyadic@13#, andd(RI ) is the Dirac delta function. Fur-
thermore, we observe that@13#

E G= BCM~RI !d3RI 5
1

iv
K= BCM

21 . ~8!

The basis of the SPFT lies in the introduction of theex-
citing field

FO exc~rI !5$I=1 ivD= •@K= ~rI !2K= BCM#%•FO ~rI !, ~9!

where

K= ~rI !5K= aua~rI !1K= bub~rI !; ~10!

and the generalized polarizability dyadic

x
= ~rI !5x

= aua~rI !1x
= bub~rI !, ~11!

with

x
= l 52 iv@K= l 2K= BCM#•@ I=1 ivD= •~K= l 2K= BCM!#21,

~ l 5a,b!. ~12!

The quantitiesFO exc(rI ) andx
=
(rI ) are linked through the inte

gral equation@10#

FO exc~rI !

5FO BCM~rI !1PE G= BCM~rI2rI8!•x
= ~rI8!•FO exc~rI8!d3rI8,

~13!

wherein the local spatially averaged electromagnetic field
represented byFO BCM(rI ). The integral equation~13! may be
formally represented in terms of its Born series as
FO exc~rI !5FO BCM~rI !1PE G= BCM~rI2rI8!•x
= ~rI8!•FO BCM~rI8!d3rI81PE G= BCM~rI2rI8!•x

= ~rI8!

•FPE G= BCM~rI82rI9!•x
= ~rI9!•FO BCM~rI9!d3rI9Gd3rI81PE G= BCM~rI2rI8!•x

= ~rI8!

•FPE G= BCM~rI82rI9!•x
= ~rI9!• HPE G= BCM~rI92rI-!•x

= ~rI-!•FO BCM~rI-!d3rI-Gd3rI9J d3rI81•••. ~14!
6-2
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THIRD-ORDER IMPLEMENTATION AND CONVERGENCE . . . PHYSICAL REVIEW E 64 066616
By ensemble averaging the terms of Eq.~14! separately and
reordering terms using a Feynman-diagrammatic techn
@14,15#, theDyson equation@10#

^FO exc~rI !&5FO BCM~rI !1PE G= BCM~rI2rI8!

•F E S= ~rI82rI9!•^FO exc~rI9!&d3rI9Gd3rI8 ~15!

is developed. Themass operatorS= (rI82rI9) has an infinite
series representation, the terms of which comprise prod
over PG= BCM(rI82rI9) and the statistical cumulants ofx

=
(rI8

2rI9). For later convenience, we express

S= ~RI !5S= 0~RI !1S= 1~RI !1S= 2~RI !1S= 3~RI !1•••, ~16!

where the subscriptj in S= j (RI ) refers to the order ofx
=
(RI ).

The Dyson equation may be manipulated to deliver an e
mate ofK= Dy0—the constitutive dyadic of the HCM arising i
the long-wavelength SPFT. Thus, we have@10#

K= Dy05K= BCM2
1

iv
~ I=1S̃= †

•D= !21
•S̃= †, ~17!

where S̃= † is the Fourier transform of the mass opera
evaluated at zero spatial frequency; i.e.,

S̃= †5E S= ~RI !d3RI . ~18!

III. MASS OPERATOR APPROXIMATIONS

For practical purposes, an approximate evaluation of
mass operator is necessary. The lowest-order truncatio
the mass operator series, i.e.,

S= ~RI !'S= 0~RI !50= , ~19!

gives the trivial resultK= Dy05K= BCM . The BCM is conven-
tionally chosen so that the first-order mass operator appr
mation does not add to the zero-order approximat
@7,8,10#. Thus, we have the condition

^x
= ~rI !&50= ~20!

and S= 1(RI )50= correspondingly. We reiterate here th
through the condition of Eq.~20!, K= BCM becomes identica
to the HCM constitutive dyadic arising from the Bruggem
homogenization formalism.

The most widely adopted procedure is to implement
second-order truncation of the mass operator series, wh

S= ~rI2rI8!'S= 2~rI2rI8!5^x
= ~rI !•PG= BCM~rI2rI8!•x

= ~rI8!&,

~21!

which is known as thebilocal approximation. After using
Eqs.~11! and~20!, the bilocally approximated mass operat
may be conveniently expressed as

S= 2~RI !5t~RI !~x
= a2x

= b!•PG= BCM~RI !•~x
= a2x

= b!. ~22!
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In order to evaluate*S= 2(RI )d3RI , the second momen
^ua(rI )ua(rI8)& must be specified. For the physically mot
vated form@16#

^ua~rI !ua~rI8!&5H f a , urI2rI8u<L

f a
2 , urI2rI8u.L,

~23!

we have

E S= 2~RI !d3RI 5~x
= a2x

= b!•W= •~x
= a2x

= b!, ~24!

the evaluation of

W= 5E
uRI u<L

PG= BCM~RI !d3RI , ~25!

having been provided elsewhere@10,11#. Calculations of
*S= 2(RI )d3RI for other choices of̂ ua(rI )ua(rI8)& have also
been presented@12#; and we note here that the resulting e
timates ofK= Dy0 were found to be comparatively insensitiv
to the form of^ua(rI )ua(rI8)& @12#.

On retaining the next highest-order term~i.e., to third or-
der in x

=
), the mass operator is approximated by@14,15#

S= ~rI2rI8!'S= 2~rI2rI8!1S= 3~rI2rI8!, ~26!

where

S= 3~rI2rI8!

5E ^x
= ~rI !•PG= BCM~rI2rI9!•x

= ~rI9!

•PG= BCM~rI92rI8!•x
= ~rI8!&d3rI9. ~27!

Some algebraic manipulations utilizing Eqs.~11! and ~20!
lead to

S= 3~rI2rI8!5S 1

12 f a
D 3

x
= a•@T=2 f a~M= 11M= 21N= !#•x

= a ,

~28!

in which

T=5E ^ua~rI !ua~rI8!ua~rI9!&PG= BCM~rI2rI9!•x
= a

•PG= BCM~rI92rI8!d3rI9, ~29!

M= 15E ^ua~rI !ua~rI9!&PG= BCM~rI2rI9!•x
= a

•PG= BCM~rI92rI8!d3rI9, ~30!

M= 25E ^ua~rI9!ua~rI8!&PG= BCM~rI2rI9!•x
= a

•PG= BCM~rI92rI8!d3rI9, ~31!
6-3
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N= 5~^ua~rI !ua~rI8!&22 f a
2!E PG= BCM~rI2rI9!•x

= a

•PG= BCM~rI92rI8!d3rI9, ~32!

are all implicit functions ofRI .
We now consider the evaluation of*T= d3RI , *M= 1,2d

3RI
and*N= d3RI for use in Eq.~18!, and then in Eq.~17!. To do
so, we must first specify the second and third moments
ua(rI ). Consistent with@10#, we choose Eq.~23! and

^ua~rI !ua~rI8!ua~rI9!&

55
f a

3 , min$L12,L13,L23%.L

f a , max$L12,L13,L23%<L

1

3
~ f a12 f a

3!, one of L12,L13,L23<L

1

3
~2 f a1 f a

3!, two of L12,L13,L23<L,

~33!

where

L125urI2rI8u, L135urI2rI9u, L235urI82rI9u. ~34!

From Eq.~33! we have

E ^ua~rI !ua~rI8!ua~rI9!&d3rI95E
L13<L

h d3rI91E
L23<L

h d3rI9

1E @ f a
31h w~rI2rI8!#d3rI9,

~35!

where

w~rI2rI8!5H 1, urI2rI8u<L

0, urI2rI8u.L,
~36!

andh5( f a2 f a
3)/3. Thus, selecting the origin of our coord

nate system atrI8, we have

T=5E $ f a
31h@w~rI9!1w~RI 2rI9!1w~RI !#%

3PG= BCM~RI 2rI9!•x
= a•PG= BCM~rI9!d3rI9. ~37!

Focusing on the term w(RI )PG= BCM(RI 2rI9)•x
= a

•PG= BCM(rI9) in Eq. ~37!, we assume that

w~RI !G= BCM~rI9!•G= BCM~rI92RI !'0= ~38!

for urI9u@L. This simplification is justified in the Appendix
for isotropic chiral mediums. It is highly probable that E
~38! is also valid for weakly anisotropic mediums with d
agonally dominant constitutive dyadics. However, in the
06661
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sence of appropriate Green function representations for s
general mediums, this remains a conjecture. Using Eq.~38!,
we make the approximation

T='E $ f a
31h@w~rI9!1w~RI 2rI9!1w~rI9!w~RI 2rI9!#%

3PG= BCM~RI 2rI9!•x
= a•PG= BCM~rI9!d3rI9. ~39!

Taking the spatial Fourier transform of Eq.~39! and applying
the convolution theorem@17#, we find

E T= d3RI 5h~V= •x
= a•W= 1W= •x

= a•V= 1W= •x
= a•W= !

1 f a
3V= •x

= a•V= , ~40!

where

V= 5E PG= BCM~RI !d3RI ~41!

5
1

iv
K= BCM

21 2D= , ~42!

by Eqs.~7! and ~8!.
We consider now the integration ofM= 1: Introducing

s~RI 2rI9!5H f a , uRI 2rI9u<L

f a
2 , uRI 2rI9u.L,

~43!

we have

M= 15E s~RI 2rI9!PG= BCM~RI 2rI9!•x
= a•PG= BCM~rI9!d3rI9,

~44!

where, as previously forT= , we have selected the origin o
our coordinate system atrI8. By means of Fourier transfor
mations and application of the convolution theorem aga
the integral

E M= 1d3RI 5~ f a2 f a
2!W= •x

= a•V= 1 f a
2V= •x

= a•V= ~45!

emerges. It follows similarly that

E M= 2d3RI 5~ f a2 f a
2!V= •x

= a•W= 1 f a
2V= •x

= a•V= . ~46!

For N= , we have

N= 5~ f a2 f a
2!E w~RI !PG= BCM~RI 2rI-!•x

= a

•PG= BCM~rI-!d3rI-2 f a
2E PG= BCM~RI 2rI-!•x

= a

•PG= BCM~rI-!d3rI-. ~47!
6-4
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Utilizing the approximation of Eq.~39! and repeating the
procedure of Fourier transformations, we find

E N= d3RI 5~ f a2 f a
2!W= •x

= a•W= 2 f a
2V= •x

= a•V= . ~48!

Finally, combining Eqs.~40!, ~45!, ~46!, and~48! into Eq.
~28! and integrating, we find

E S= 3~RI !d3RI 5
f a~122 f a!

3~12 f a!2
x
= a•~V= •x

= a•W= 1W= •x
= a•V=

1W= •x
= a•W= !•x

= a . ~49!

IV. NUMERICAL RESULTS

Using the zeroth-, second-, and third-order-approxima
SPFT in the long-wavelength regime, we investigated
constitutive properties of two examples of HCM. The vo
ume fraction f a50.3 and an angular frequencyv52p
31010 rad s21 were selected for all numerical results pr
sented here.

A. Isotropic chiral HCM

In the first example, component phasea was chosen to be
an isotropic chiral material with constitutive relations

e= a5e0eaI=, j
=

a52z
=

a5 iAe0m0jaI=, m= a5m0maI=,
~50!

and parameter values

ea5d~31 i 1.5!, ja5d~1.51 i !, ma5d~21 i 0.8!,

~51!

whered510, 20, and 30. Component phaseb was taken to
be free space. The parameterd provides the means to var
the constitutive contrast between the component phases.
relative permittivity eHCM of the resulting isotropic chira
HCM is plotted as a function of correlation lengthL in Fig.
1. The values for the zeroth-order approximation—which
identical to those values calculated using the Bruggeman
mogenization formalism—are independent of the correlat
length. Furthermore, the calculated values for all orders
approximation coincide atL50. The magnetoelectric param
eterjHCM and relative permeabilitymHCM of the HCM be-
have in a manner similar to the relative permittivityeHCM

and are displayed in Figs. 2 and 3, respectively.
Under the long-wavelength regime, we requireQ!1,

where

Q5
maxWk

2p
L. ~52!

For the present case, in which the BCM is anisotropic chiral
comparison medium,

Wk5$ug1u,ug2u%, ~53!

whereg6 denote the left- and right-handed wave numbers
the BCM @22#. We find for the example illustrated in Figs
06661
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1–3, Q50.1 at L55.131024 m for d530; at L55.7
31024 m for d520; and atL57.331024 m for d510.
These limits establish the applicability ranges of the p
sented formalism.

B. Faraday chiral HCM

For our second example, we again selected the isotro
chiral medium of Eqs.~50! and~51! as component phasea. A
magnetically gyrotropic medium characterized by

e= b5e0ebI=, j
=

b5z
=

b50= , ~54!

m= b5m0@mbI=2 img
buÎ z3I=1~mu

b2mb!uÎ zuÎ z#, ~55!

was chosen as component phaseb, along with the paramete
values

eb51.21 i 0.4, mb52.51 i 0.5, mu
b52.11 i 0.4,

mg
b50.21 i 0.1. ~56!

The resulting HCM, with the constitutive relations

FIG. 1. Real and imaginary parts of the relative permittivity
an isotropic chiral HCM, calculated using the zeroth-, second-,
third-order mass operator approximations, plotted against corr
tion lengthL for d510, 20, and 30. AtL50, the calculated values
for all orders of approximation coincide. See Sec. IV A for t
constitutive parameters of the component phases. Key: bro
dashed lines indicate zeroth-order values; solid lines indic
second-order values; dashed lines indicate third-order values.
6-5
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e=HCM5e0@eHCMI=2 i eg
HCMuÎ z3I=1~eu

HCM2eHCM!uÎ zuÎ z#,

~57!

j
=

HCM5 iAe0m0@jHCMI=2 i jg
HCMuÎ z3I=

1~ju
HCM2jHCM!uÎ zuÎ z#, ~58!

z
=

HCM52j
=

HCM, ~59!

m= HCM5m0@mHCMI=2 img
HCMuÎ z3I=1~mu

HCM2mHCM!uÎ zuÎ z#,

~60!

belongs to the general class ofFaraday chiral mediums
@18,19#. Such HCMs have been comprehensively studied
ing both the Maxwell Garnett and Bruggeman formalis
@20,21#, as well as the bilocally approximated SPFT@11#.
The real and imaginary parts of the calculated relative p
mittivity parameterseHCM, eu

HCM , andeg
HCM are graphed as

functions of correlation lengthL in Figs. 4 and 5, respec
tively. A similar close agreement between the second-
the third-order calculated values was also found for the m
netoelectric parametersjHCM, ju

HCM , and jg
HCM , and the

relative permeability parametersmHCM, mu
HCM , andmg

HCM ;
therefore, the corresponding graphs are not displayed.
clarity, the zeroth-order approximation values—which a
constant with respect toL and are equal to the second- a
third-order values in the limitL→0—are not displayed. The
BCM lies in the category of weakly anisotropic medium

FIG. 2. Same as Fig. 1, but the plotted values are of the m
netoelectric parameter of the isotropic chiral HCM of Sec. IV A
06661
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with diagonally dominant constitutive dyadics, for which w
anticipate that the simplification~38! is valid.

Since the Faraday chiral HCM is a Lorentz-nonrecipro
medium @23#, the corresponding dispersion equation yiel
four distinct wave numbers:g1 , g2 , g3, and g4. Accord-
ingly, here we have

Wk5$ug1u,ug2u,ug3u,ug4u%, ~61!

and we find Q50.1 at L53.631024 m for d530; at
L54.331024 m for d520; and atL55.531024 m for
d510.

V. CONCLUSION

It is clear from Secs. IV A and IV B that the third-orde
approximated SPFT yields significantly different results fro
the bilocally approximated SPFT only as either~i! the corre-
lation lengthL becomes electrically larger, and/or~ii ! the
constitutive contrast between the component phasesa andb
increases.

However, in case~i!, the long-wavelength approximatio
begins to lose validity; while in case~ii !, spatial fluctuations
in the generalized polarizabilityx

=
(rI ) are likely to become

strong. Thus, in either instance the addition of the third-or
term S= 3(RI ) to the mass operator is not significant, provid
the basic assumptions underlying the long-wavelength SP
remain valid. We, therefore, conclude that the SPFT c
verges at the level of the bilocal approximation for isotrop

g- FIG. 3. Same as Fig. 1, but the plotted values are of the rela
permeability of the isotropic chiral HCM of Sec. IV A.
6-6
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chiral mediums, as well as for chiroferrite mediums that
both weakly uniaxial and weakly gyrotropic.
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FIG. 4. Real parts of the relative permittivity paramete
eHCM, eu

HCM , andeg
HCM of a Faraday chiral HCM, calculated us

ing the second- and third-order mass operator approximations,
ted against correlation lengthL for d510, 20, and 30. See Sec
IV B for the constitutive parameters of the component phases. K
solid lines indicate second-order values; dashed lines indicate t
order values.
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e
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APPENDIX

We show thatw(RI )G= BCM(rI )•G= BCM(RI 2rI ) for urI u@L is
negligible in comparison with its evaluation forurI u,L. To
do so, we express the 636 dyadic Green functionG= BCM(RI )
in terms of 333 dyadics as

G= BCM~RI !5S G= BCM
ee ~RI ! G= BCM

em ~RI !

G= BCM
me ~RI ! G= BCM

mm ~RI !
D . ~A1!

We begin by considering the isotropic dielectric-magne
case: the 333 constitutive dyadics are

e=BCM5eI=, m= BCM5mI=, j
=BCM5z

=BCM50= , ~A2!

t-

y:
d-

FIG. 5. Same as Fig. 4, but the plotted values are the imagin
parts of the relative permittivity parameterseHCM, eu

HCM , and
eg

HCM of the Faraday chiral HCM of Sec. IV B.
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and the wave numberk5vAem. An explicit representation
of G= BCM

ee (RI ) is available as@24#

G= BCM
ee ~RI !5

1

ive F1

3
d~RI !I=2

1

4p
~211 ikR1k2R2!

3
exp~ ikR!

R3
I=1

1

4p
~323ikR2k2R2!

3
exp~ ikR!

R3
RÎ RÎ G . ~A3!

For r @L, and introducing constantsa, b, and g of order
unity, we have
-

-
a

l.

y,

06661
u@G= BCM
ee ~rI !# j j u

u@G= BCM
ee ~LrÎ !# j j u

'

a1bkr1gk2r 2

r 3

a1bkL1gk2L2

L3

, ~ j 51,2,3!

'S L3

r 3 D a1bkr1gk2r 2

a

5
L3

r 3
1b~kL!

L2

r 2
1g~kL!2

L

r
'0, ~A4!

sinceukLu!1 in the long-wavelength regime.
For the case of theG= BCM

ee (RI 2rI ) term, we need only con-
siderR<L @sincew(RI )50 for R.L#. Again, for r @L and
with constantsa, b, andg of order unity, we have
ar

that
u@G= BCM
ee ~RI 2rI !# j j u

u@G= BCM
ee ~RI 2LrÎ !# j j u

'

a1bk~R2r !1gk2~R2r !2

~R2r !3

a1bk~R2L !1gk2~R2L !2

~R2L !3

~ j 51,2,3!

'S ~R2L !3

~R2r !3 D a1bk~R2r !1gk2~R2r !2

a

5
~R2L !3

~R2r !3
1b@k~R2L !#

~R2L !2

~R2r !2
1g@k~R2L !#2

R2L

R2r
'0, ~A5!

since (L2R)!(r 2R). For the isotropic dielectric-magnetic case, the corresponding terms forG= BCM
mm (RI ) behave similarly to

G= BCM
ee (RI ); the corresponding terms forG= BCM

em (RI ) andG= BCM
me (RI ) do not contribute to the analysis of Sec. III as they disappe

upon integration.
For an isotropic chiral medium, the diagonal terms ofG= BCM

ee (RI ), G= BCM
em (RI ), G= BCM

me (RI ) andG= BCM
mm (RI ) are all of the same

form as those in Eq.~A3! @22#, while the integrals of the off-diagonal terms are null valued. Therefore, we have
w(RI )G= BCM(rI )•G= BCM(RI 2rI ) for urI u@L is negligible in comparison with its evaluation forurI u,L, for an isotropic chiral
medium.
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