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The strong-property-fluctuation theot@PFT) has been widely applied under the second-order approxima-
tion (also known as the bilocal approximatjoio estimate the constitutive properties of effectively homoge-
neous composite mediums. A third-order mass operator approximation is developed here. The convergence of
the long-wavelength, bilocally-approximated SPFT is demonstrated for isotropic chiral composite mediums, as
well as for chiroferrite composite mediums.
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[. INTRODUCTION erator series. In the usual SPFT implementation, the second-
order truncation—known as thieilocal approximation—is
In modeling the behavior of physical systems, the math-adopted. A covariance function and its associated correlation
ematical representation of solutions as infinite series is conlengthL are used to characterize the distributional statistics
monplace. However, first- or second-order approximation®f the component material phases under the bilocal approxi-
are often utilized, while the implementation of higher-ordermation. Furthermore, theong-wavelengthapproximation is
approximations may be too arduous in practice. Clearly, theisually adopted in which the actions of scattering centres
issue of convergence is of fundamental importance in suckeparated by distances much greater than the correlation
cases. A prime example occurs in the strong-propertylength are assumed to be statistically independent. To our
fluctuation theory(SPFT). The SPFT provides a formalism knowledge, higher-order approximations and the issue of
for estimating the constitutive properties of effectively ho-convergence of the mass operator representation have not
mogeneous, linear composite mediums. It represents an atiitherto been addressed. In the present paper, we develop a
vance over the more conventional approaches to homogerthird-order approximation, and investigate convergence of
zation, such as the Maxwell Garnett formaligimcluding its ~ the mass operator series. The analysis is presented for isotro-
incremental and differential variantand the Bruggeman pic chiral composite mediums. Additionally, we conjecture
formalism [1-6], by providing a more comprehensive de- that our conclusions hold for more general mediums; this
scription of the distributional statistics of the component ma-conjecture is substantiated by our numerical results.
terial phases. The SPFT has been successively developed forIn the notation adopted, six-vectofthree-vectorsare in
the cases of isotropic dielectiiz], anisotropic dielectri¢8],  bold (norma) face and underlined, whereas<x& (3Xx3)
isotropic chiral[9], and, most recently, bianisotrop[d0] dyadics are in boldnorma) face and double underlined. The
mediums. Recent studies for the general bianisotropic cadaverse and thejth entry of a dyadicY are given a9=(‘1
have highlighted the role of the component phase topologgnd [Y],;, respectively. For dyadics and vectors, the dot
and correlation lengthll], as well as covariance function product denotes contraction of indexes. The unit vector cor-
[12]. responding to a vectar is signified byn and the 66 (3
) In the SPFT, statistical CumulantS of the Spatial diStribU'X 3) |dent|ty dyad|c by|_ (|_) The perm|tt|v|ty and perme_
tion of the component material phases are used perturb@fb“ity of free spacéi.e., vacuum are denoted by, and u,,

tively to refine an initial ansatz for the nature of the homog-respectively. The Cartesian unit vector in thelirection is
_enlzed composite mediufHCM). Solutions are expressed QZ_ The ensemble average of a quantitys represented by
in terms of a so-calledhass operatothat—due to the pro- o)

cess of iteration—has an infinite series representation. Prev?— '

ous studies|7-12] have exclusively concentrated on the

zeroth-, first-, and second-order truncations of the mass op- Il SPET GENERALITIES

We consider the long-wavelength SPFT pertaining to a
*FAX: +44 131 650 6553; Email address: tm@maths.ed.ac.uk two-phase HCM. The component phases are desigrated
TFAX: +1 814 863 7967; Email address: axl4@psu.edu and b. All space is partitioned into the disjoint regioNg,
*FAX: +44 141 330 4111; Email address: wsw@maths.gla.ac.uland V,, that contain the phases and b, respectively. The
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component phases are assumed to be randomly distributed asA key concept in the SPFT is th@anisotropic compari-
spheres; the distributions are specified in terms of characteson mediuniBCM), characterized by the constitutive dyadic

istic functions given as Kgcwm - We denote the dyadic Green function of the BCM by
Ggcm(R) and note that the singular behavior@gcy(R) in
1, rev, the limit |R|—0 is conveniently isolated through
6,(r)= (/=a,b). 1
AL W Gocm(R)=PGscu(R) + DAR), @
0, reVv,

] o o whereP is the principal value operation excluding a spheri-
In particular, statistical moments of the characteristic funcg| region abouR=0, D is the corresponding depolariza-
tions are utilized: Theath moment is the expectation value tjon dyadic[13], and 8(R) is the Dirac delta function. Fur-
(0,(r1)---6,(ry)) and represents the probability for thermore, we observe thit3]

r., ..., being insideV, (/=a,b); ( ) denotes en-
semble averaging. Thus, the volume fraction of phésis 1
given by the first moment of (r); i.e., f QBCM(R)d3R= mggéM. (8)
f,=(0,(), (/=ab). ) The basis of the SPFT lies in the introduction of the
citing field
Further, the second moment @f(r) is used to define a
covariance function as Fexd D) ={l+i0D-[K(r)—Kgeml} F(r), 9)
T(R)=(0a(1) 0a(r")) =(0a(1))(ba(r")), 3 where
or, equivalently, K (1) =Ka0a(r) +Kpfh(1); (10)
T(R)=(0p(1) Op(r")) = (Ou(1))(Op(r")), (4 and the generalized polarizability dyadic
whereR=r—r’. We define a correlation length such that X(1) = Xa0a(1) + xp06(1), (12)
the covariance function(R) vanishes for|R|>L. In the = =T
long-wavelength regime, the principal electromagneticyii,
wavelengths are assumed to be much larger than the corre-
lation IengthL — i K, —K JTl+iwD- (K ,—K -1
The component phases are characterized by linear bi- Xo=~lollt ~Keoml [L+10D-(K  ~Kaew ]
anisotropic constitutive relations, given in the frequency do- (/=a,b). (12)
main as
The quantitied=.,{(r) and x(r) are linked through the inte-
C(r)=K,-E(r), reV,, (/=ab), ) gral equatior{10] )
where Fexd £)
D([)} € & [E([)} 3
C(r)= , K =|" =1, En)= . =Fgcm(r)+P | Ggem(r—r")-x(r')-Eexdr’)dr’,
= {B(t) ““loow) Tk ke
(6) (13

The 3x 3 dyadicse, and u, are the permittivity and the wherein the local spatially averaged electromagnetic field is
permeability dyadics, respectively, where@s and {, are  represented bfgcw(r). The integral equatio13) may be
the magnetoelectric constitutive dyadics. formally represented in terms of its Born series as

Eexc(£)=EBCM(£)+7’f QBCM(E—L’)-;((E’)-EBCM(E’)dst’H’f Geem(r—r')-x(r")

Pf (E‘BCM([,_[”)'):(([”)'EBCM([”)dSEH}dSE/"'Pf Geem(r—r")-x(r")
{PI Geem(r' —r")- x(r")- [Pf QBCM([”_[,”)'g([W)'EBCM([,”)da[W}dBEH]d3[,+ e (14
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By ensemble averaging the terms of Ety) separately and In order to evaluate[¥,(R)d°R, the second moment
reordering terms using a Feynman-diagrammatic techniquéd,(r) 6,(r’)) must be specified. For the physically moti-
[14,15, the Dyson equatiorf10] vated form[16]

far  fL—r'|sL

<9a([)6’a(£')>=[ (23

2 lr—r'|>L,

<Eexc<z>>=EBCM<r>+Pf Gacm(t—1")

J2([,_[”)'<Eexc([")>d3[”}d3[’ (15
- we have

is developed. Thenass operato(r’'—r"”) has an infinite

series representation, the terms of which comprise products J' 3, (RA*R=(xa= Xb) - W- (Xa— Xb), (24)
over Fepcw(r'—r”) and the statistical cumulants gf([’ h = - 7 F

e H .
r"). For later convenience, we express the evaluation of

2(R)=20(R)+ 21 (R)+22(R)+23(R)+- -+, (16)

_ 3
where the subscriitin 3;(R) refers to the order of(R). W lngLPQch(R)d R, (25)
The Dyson equation may be manipulated to deliver an esti- ) _
mate ofK p,o—the constitutive dyadic of the HCM arising in having been provided elsewhef@0,11. Calculations of

the long-wavelength SPFT. Thus, we h416] J22(R)A®R for other choices of 6(r)6a(r')) have also
been presentedl2]; and we note here that the resulting es-

1 S o1 Tt timates ofKp,o were found to be comparatively insensitive
Koyo=Keem— 7 (L+Z"-D) - X7, (17 {0 the form of( 9,(r) 6.(r")) [12].
iw
On retaining the next highest-order tefne., to third or-

where 31 is the Fourier transform of the mass operatorder inx). the mass operator is approximated|ti$, 19

evaluated at zero spatial frequency; i.e.,

2(r—r)=~Zp(r—r")+Zs(r—r’), (26)
3= f (R)ER. (18 where
Ts(r—r’)
Ill. MASS OPERATOR APPROXIMATIONS -
For practical purposes, an approximate evaluation of the =j (x(r)-PGgem(r—r")-x(r")

mass operator is necessary. The lowest-order truncation of B )

the mass operator series, i.e., “PGgem(r”—r1")- x(r'))d%”. (27)
2(R)~Zo(R)=0, (19

Some algebraic manipulations utilizing Eq41) and (20)

gives the trivial resulK p,o=Kgcy. The BCM is conven- 1€3d 10

tionally chosen so that the first-order mass operator approxi- 1 \3
mation does not add to the zero-order approximation S (r—r' :( ) TT=f(M+M-+N)T-
[7,8,10. Thus, we have the condition (01 —f,) X e e

(28)
(x(1)=0 20
B in which
and X%;(R)=0 correspondingly. We reiterate here that
through the condition of Eq.20), Kgcw becomes identical _ , " "
to the HCM constitutive dyadic arising from the Bruggeman T=] (0a(r)0a(r") 0a(r"))PGaem(r —1") - Xa
homogenization formalism. e 3en
The most widely adopted procedure is to implement the - PGgem(t”—r")dr", (29)
second-order truncation of the mass operator series, whence
S(r—r)=Za(r—r")=(x(r)- PGgcm(r—1")- x(r")), '!'Ff (0a(1) 05(1")) PGeem(r —1") - Xa
2y PGacu(t’— 1), (30)
which is known as theilocal approximation After using
Egs.(11) and(20), the bilocally approximated mass operator
may be conveniently expressed as Mz:f (0a(r") 02(r")) PGeem(I —1") - Xa
22(R) =7(R)(Xa= Xb) - PGrcm(R) - (Xa= Xv)- (22 “PGgem(r”—1")d*”, (31

066616-3
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) 5 . sence of appropriate Green function representations for such
N=({0a(r) Oa(r )>_2fa)J PGeem(r —1") Xa general mediums, this remains a conjecture. Using(&8),
we make the approximation

-PGgem(t”—1")d%”, (32)
are all implicit functions ofR. I”f {f3+h[w(r")+w(R—r")+w(r")w(R—r")}
We now consider the evaluation ¢fTd®R, [M;0°R
and fNd°R for use in Eq.(18), and then in Eq(17). To do X PGgem(R—1")- Xa- PGem(r”)dr". (39
so, we must first specify the second and third moments of
6,(r). Consistent witf 10], we choose Eq(23) and Taking the spatial Fourier transform of E§9) and applying

the convolution theoreml7], we find
(0a(r) Oa(r") Oa(r"))

(13, min{Lyp, Ly, Logt>L f TdPR=N(V - xa- W+W: xa- V+W- xa- W)
fa, maxLi,,Lqz,Log <L +fg\=/')=(a'\=/’ (40)
{1 where
< §(fa+ 213, one of Ly,,Ly3,Los<L
1 YZJ PGgcem(RIA°R (41)
\ §(2fa+fg), two of Lqy,L3,Loss<L,
1
(33 :mlﬁ BéM_ D, (42)
h
where by Egs.(7) and(8).
Lo=|r=r'|, Lu=|r=r"|, Ly=|r'—1"]. (34 We consider now the integration & : Introducing
From Eq.(33) we have fa, IR—r"|<L
s(R=1")=y (43
f <0a<z>0a<c’>0a<z">>d3z”:f hdst”*f hd®” fa  [RoUIEL

Lyg=<L Log<L

we have
+ [ rrdenwe—rier,
Mlzf S(R_[”)PQBCM(R_[”)'/}’a'PgBCM([”)d?’[",

(35 (44)
where
where, as previously fof, we have selected the origin of
1, Ir—r’|<L our coordinate system at. By means of Fourier transfor-
w([—[’)=[ (36)  mations and application of the convolution theorem again,
0, [r—r'|>L, the integral

andh=(f,—f3)/3. Thus, selecting the origin of our coordi-

3 = —_ 2 . . 2 . .
nate system at’, we have f Mid"R=(fa= )W Ya- VH eV xa 'V (49

_L_:f (3 h[w(r) + W(R—1") + W(R)]} emerges. It follows similarly that

X PGacm(R—1")- Xa- PGaom(t )", (37) f Mo@*R=(fa— f)V - xa- WH 2V yo V. (46)

Focusing on the term W(R)PGgcm(R—I") xa

For N, we have
- PGgem(r”) in Eq. (37), we assume that

W(R)Ggcem(r")-Geem(r"—R)=~0 (38) U:(fa_fg)f W(R)PGgem(R—1") - xa
for |r”|>L. This simplification is justified in the Appendix )
for isotropic chiral mediums. It is highly probable that Eq. 'PQch(E"’)d3[”'—faf PGecm(R—1") " xa
(38) is also valid for weakly anisotropic mediums with di-
agonally dominant constitutive dyadics. However, in the ab- “PGgem(r”)dr”. (47
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Utilizing the approximation of Eq(39) and repeating the
procedure of Fourier transformations, we find

f Nd®R=(f,~ fOW: xa- W—F2V-xa V. (48 6

Finally, combining Egs(40), (45), (46), and(48) into Eq. Ree
(28) and integrating, we find

f,(1-2f,)
| samor- S WY !
+V=V')=(a'v=v)’¥a- (49

IV. NUMERICAL RESULTS

Using the zeroth-, second-, and third-order-approximated
SPFT in the long-wavelength regime, we investigated the 2.5
constitutive properties of two examples of HCM. The vol- 5
ume fraction f,=0.3 and an angular frequency=2m Im e B
x10'° rads ! were selected for all numerical results pre- 1.5
sented here.

A. Isotropic chiral HCM 0.5

In the first example, component phaswas chosen to be
an isotropic chiral material with constitutive relations

a:

=o€, E'=—"=iVeomolsl, u=poul,

(50) FIG. 1. Real and imaginary parts of the relative permittivity of
an isotropic chiral HCM, calculated using the zeroth-, second-, and
and parameter values third-order mass operator approximations, plotted against correla-
tion lengthL for §=10, 20, and 30. AL =0, the calculated values
e€=6(3+i 15, &=56(15+i), wu*=82+i0.9), for all orders of approximation coincide. See Sec. IV A for the

(51) constitutive parameters of the component phases. Key: broken

dashed lines indicate zeroth-order values; solid lines indicate
where =10, 20, and 30. Component phasevas taken to  gecond-order values; dashed lines indicate third-order values.

be free space. The paramei@provides the means to vary
the constitutive contrast between the component phases. The 3, Q=0 1 at L=51x10"% m for 6=30: at L=5.7
relative permittivity e"“M of the resulting isotropic chiral <10-4 m ;‘or 5=20; .and atl = 7.3 10-4 m for 5= 16

HCM is plotted as a function of correlation lengthin Fi
1. The vglues for the zeroth-order apprOX|mat|on—Wh|gh are These limits establish the applicability ranges of the pre-
0sented formalism.

identical to those values calculated using the Bruggeman h
mogenization formalism—are independent of the correlation _
length. Furthermore, the calculated values for all orders of B. Faraday chiral HCM

approximation coincide dt=0. The magnetoelectric param-  For our second example, we again selected the isotropic

eter "M and relative permeability."“M of the HCM be-  chiral medium of Eqs(50) and(51) as component phase A

have in a manner_sim_ilar to the relative pgrmittiviﬁ cM magnetically gyrotropic medium characterized by
and are displayed in Figs. 2 and 3, respectively.

Under the long-wavelength regime, we requi@e<1, =ee’l, §*={"=0, (54)
where . ~ o~
o maxw, o 2°= ol mPL =i pugu, X L+ (g —uP)uu,],  (55)
2m was chosen as component phasalong with the parameter
values
For the present case, in which the BCM isisotropic chiral
comparison medium, =1.2+i04, uP=25+i05 ul=2.1+i0.4,

Wi={ly* LIy 1} (53)

wherey™ denote the left- and right-handed wave numbers in
the BCM [22]. We find for the example illustrated in Figs. = The resulting HCM, with the constitutive relations

=0.2+i0.1. (56)
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2.5

2.2
RegHCM

0 0.0003 0.0006
L[ m]

FIG. 2. Same as Fig. 1, but the plotted values are of the mag- FIG. 3. Same as Fig. 1, but the plotted values are of the relative
netoelectric parameter of the isotropic chiral HCM of Sec. IV A, Permeability of the isotropic chiral HCM of Sec. IV A.

HCM _ HCM _: _HCM~ HCM_ _HCM\ 7 with diagonally dominant constitutive dyadics, for which we
e =gl e —ieg U X+ (e €U, anticipate that the simplificatiof88) is valid.

(57) Si_nce the Faraday chiral HCM i; a Lo.rentz-non.recip_rocal
€M = el €M~ 1653 x | four cistino wave ncmbersys. vg. ys ancps AGORG:
T (gHOM_gHemy G 6y 58) ingly, here we have
HOM_ _ gHem (59 Wie={lyal:lval sl vals | val b, (61)
- e HeMA _ HoM HeM.s - and we findQ=0.1 at L=3.6x10"* m for 5=30; at
w = pol w T L g U X (T UMl L=4.3x107% m for §=20; and atL=5.5x10"% m for
(600 8=10.

belongs to the general class &faraday chiral mediums
[18,19. Such HCMs have been comprehensively studied us- V. CONCLUSION

ing both the Maxwell Garnett and Bruggeman formalisms It is clear from Secs. IV A and IV B that the third-order-

E_ZhOéZrJiélaZn\éveilrln:;rfg(ray ?)I!aorf: "Oyf ipepgigzﬁat; % ?53& perapproximated SPFT yields significantly different results from
the bilocally approximated SPFT only as eitligrthe corre-
mittivity parametersH°M, e[]“M ande“M are graphed as focally approxi y as eittip

lation lengthL becomes electrically larger, and/@i) the

functions of correlation length in Figs. 4 and 5, respec- .qngitytive contrast between the component phasesdb
tively. A similar close agreement between the second- ang, ra5ses.

the th|rd-o'rder calculatede/’\?lueﬁcv\'/was also fgggd for the mag- However, in caséi), the long-wavelength approximation
netoelectric parameters“™, &M, and £, and the begins to lose validity; while in cadé), spatial fluctuations
relative permeability parametegs’M, uHM, and,ug'CM; in the generalized polarizability(r) are likely to become
therefore, the corresponding graphs are not displayed. Fatrong. Thus, in either instance the addition of the third-order
clarity, the zeroth-order approximation values—which areterm23(R) to the mass operator is not significant, provided
constant with respect th and are equal to the second- andthe basic assumptions underlying the long-wavelength SPFT
third-order values in the limit —0—are not displayed. The remain valid. We, therefore, conclude that the SPFT con-
BCM lies in the category of weakly anisotropic mediums verges at the level of the bilocal approximation for isotropic
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5.5
4.5
5
HCM 3'5
Ree
Ime ™
4.5
2.5
s = 10
1.5
0 0.0002 0.0004 0 0.0002 0.0004
L[ m] L[ m]
5.5
4.5
5
N
Re €5 /\ 3.5
4.5 & = 20 Imes™
2.5
s =10
1.5
0 0.0002 0.0004
Lim] 0 0.0002 0.0004
L[ m]
0 e
0.02
-0.005
Reeq™
Imed™
-0.01 0.01
-0.015
0
0 0.0002 0.0004 5 0 0002 0 0003
Llm ' '
[m] L[]

FIG. 4. Real parts of the relative permittivity parameters FIG. 5. Same as Fig. 4, but the plotted values are the imaginary

HCM _HCM HCM ; _
€"", e, andeg " of a Faraday chiral HCM, calculated us parts of the relative permittivity parametee$’ M, €M and
ing the second- and third-order mass operator approximations, plot-jcm of the Faraday chiral HCM of Sec. IV B
ted against correlation length for =10, 20, and 30. See Sec. €g y ' )

IV B for the constitutive parameters of the component phases. Key:

solid lines indicate second-order values: dashed lines indicate third- APPENDIX

order values. B .
We show thatw(R)Ggcm(r) - Geem(R—r) for [r[>L is

negligible in comparison with its evaluation for|<L. To
chiral mediums, as well as for chiroferrite mediums that aredo so, we express thex@ dyadic Green functioGgcw(R)
both weakly uniaxial and weakly gyrotropic. in terms of 3X 3 dyadics as

Gegem(R)  Geem(R)
ACKNOWLEDGMENTS Gecm(R)=| " me ~mm : (A1)
i ) ) B Gecm(R) Geem(R)
The present study was partially carried out while T.G.M.
:r:s'tid _I'_AHL'Cat the. P(_ernnstyLvarllﬁ Stjat.e Untl'vers::[y.s T‘S'Ma We begin by considering the isotropic dielectric-magnetic
anks the L.aregie Trust for the Universities ol scotland s the 3 3 constitutive dyadics are
and the Department of Mathematics, University of Glasgow
for financial support, and also the Pennsylvania State Uni-
versity for hospitality. €scm=€l, wecv=ul,  fsecm=Eecm=0, (A2)
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and the wave numbét=weu. An explicit representation

mn _ _ a+ Bkr+ yk2r?
of Ggew(R) is available ag24] —_—

I[Geem(D)]jl _ r3 (=123
1 1 [GEEm(LD) 1l e+ BKL+ yk2L? "
ee __— = i . 22 —3
Ceem(R) == 3 6(RIL— 7— (= 1+IkR+k°R%) L
L3\ a+ Bkr+ ykr?
exp(ikR) 1 _ ~<_
X 1+ 7-(3-3ikR-K*R?) 3 o
L3+,8(kL)L2+ (kL)ZL 0 (A4)
exp(ikR) . . = _ —~0,
5 p;—s ag|. (A3) re e

since|kL|<1 in the long-wavelength regime.

For the case of th&gg,(R—r) term, we need only con-
siderR=<L [sincew(R)=0 for R>L]. Again, forr>L and
with constantsy, B, and+y of order unity, we have

For r>L, and introducing constants, g3, andy of order
unity, we have

a+ Bk(R—r)+ yk?(R—r)?

I[Geem(R—1)Tj5l _ (R—1)3 (i=1.2.3
I[GEem(R—LD)];|  a+Bk(R—L)+ yk*A(R—L)? o
(R-L)®
(R—L)3| a+ BKk(R—r)+ vk?’(R—r)?
- (R—r>3) @
(R-L)3 (R—L)?

+y[k(R—L)]?——

0, (A5)

-+ BIK(R-L)]

R—r

(R—r) (R—r)?
since L —R)<(r—R). For the isotropic dielectric-magnetic case, the corresponding ternGgfgy;,(R) behave similarly to
GEem(R); the corresponding terms f@EE \(R) andGEE,(R) do not contribute to the analysis of Sec. Ill as they disappear
upon integration.

For an isotropic chiral medium, the diagonal terms3gt w(R), Ggtm(R), GEcm(R) andGEL(R) are all of the same
form as those in Eq(A3) [22], while the integrals of the off-diagonal terms are null valued. Therefore, we have that
W(R)Ggcwm(r) - Geem(R—r) for [r|>L is negligible in comparison with its evaluation for|<L, for an isotropic chiral

medium.
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